
November, 2002

Let Users Control Fonts

Tamar E. Granor, Ph.D.

My eyesight isn't what it used to be. For example, reading the date on
my wristwatch now requires a delicate maneuver to position it at just

the right distance. Fortunately, most of the software I use every day
provides easy ways to handle this problem. Some applications (like

Word) let me zoom in and out, while others (like VFP and Windows) let

me choose the fonts and sizes they use. In fact, it's reached the point
where I'm pretty annoyed at apps that don't let me configure fonts

and sizes to fit my needs.

While I know I'm not a typical user by any stretch of the imagination,

this is one area where I feel confident that lots of users share my
feelings. No one wants to squint at a form to try to make out its

contents, and no one font and size combination is going to be just
right for all users. However, while Windows provides a way for users to

control the colors used in applications, the font choices you can make
in the Display Properties dialog apply only to Windows components

(like title bars and menus) and not to the contents of windows.

So I set out to find a way to let my users configure fonts for forms in

the applications I write. I ended up with three cooperating class
hierarchies, one for each of the three major tasks involved in the

process. The first class does the actual "refonting" of forms and their

contents. The second handles resizing and repositioning of objects
based on their new font characteristics. The final class in the group

saves and restores font and position information, so that users only
have to set it up once. As a strong believer in reuse, I was happy to

adapt the latter two classes from existing classes written by other
developers. Figure 1 shows an example form as it was originally

created. Figure 2 shows the same form after changing the font to 14-
point Comic Sans.

Figure 1. As packaged–This example form was created using 9-point Arial.

Figure 2. Bump it up–After changing the form's font to 14-point, Comic Sans,
everything, including the form, is bigger.

Decomposing the problem

At first glance, the question of changing the font and size combination

on a form sounded quite simple: Let the user choose a font and size
and use the SetAll method to apply it to every object on the form.

However, a little thought and experimentation turned up several
problems:

 It's possible for different items on a form to use different font
sizes in the first place. Those distinctions should be maintained.

That is, if one control initially uses a 20-point font while another
uses 10-point, there's probably a reason related to the relative

importance of the two controls. Making both controls use the

same font size could have a negative impact on the user

interface. (It can also be the case that different controls use
different fonts; the technique described here doesn't provide a

way to maintain those differences, but could be adapted to do
so.)

 When a font or font size is changed, the data may no longer fit
into the allocated space. That's, of course, particularly an issue

when the font size is increased, but it can also occur due to the
choice of font. Even in the same size, some fonts are wider and

others are narrower. Once we change the size of controls to
accommodate the new font and size combination, controls might

land on top of each other.

 Once a user changes the font for a form, she'll probably expect

that form to use her choices every time she works with it (or, at
least, until she changes it again). Users are likely to be pretty

annoyed by an application that makes them set up their font

choices every time they run a form.

Not coincidentally, the three problems map directly to the three class

hierarchies I ended up with. The font handler class deals with the issue
of maintaining the relative size of fonts when the font changes. The

resizing class ensures that controls are the right size for their content,
and that they don't overlap. Finally, the persistence classes maintain

the user's settings.

Recursion and drilling down

All three classes use a similar strategy in performing their assigned

tasks. They start at the form-level and drill down to every contained
control. Each of the class hierarchies has at least one recursive

method. (A recursive method is one that calls itself).

VFP supports recursion happily, as long as you don't exceed the

program stack limit of 128 calls. Allowing a few levels for setting
things up, a VFP form that has controls nested more than 120 levels is

extremely unlikely. While the total number of objects on a form may
reach that range, to cause a problem with the recursive methods,

they'd have to be nested that deeply.

Drilling down into VFP's containership hierarchy is quite simple. In VFP

7, every container object has an Objects collection with a member for
each contained object. That means you can write code like this:

* Assume oCurrentControl is the control being processed
* Assume also that we're in a method called SomeMethod
FOR EACH oControl in oCurrentControl.Objects
 This.SomeMethod(oControl)
ENDFOR

In earlier versions of VFP, you have to drill down through various
different collections. For example, pageframes have a Pages collection,

while OptionGroups and CommandGroups have Buttons collections.
Containers (like forms and pages) that can hold objects of different

types have a Controls collection. So, code meant to run in versions

prior to VFP 7 has to use a case statement along these lines to drill
down:

* Same assumptions as above
DO CASE
CASE UPPER(oCurrentControl.BaseClass) = "PAGEFRAME"
 FOR EACH oPage IN oCurrentControl.Pages
 This.SomeMethod(oPage)
 ENDFOR
CASE INLIST(UPPER(oCurrentControl.BaseClass), ;
 "OPTIONGROUP", "COMMANDGROUP")
 FOR EACH oButton IN oCurrentControl.Buttons
 This.SomeMethod(oButton)
 ENDFOR
* Other cases to handle other types of controls
OTHERWISE
 FOR EACH oControl IN oCurrentControl.Controls
 This.SomeMethod(oControl)
 ENDFOR
ENDCASE

The actual processing component of a particular method can occur

before or after such a loop. In fact, the font handler code processes
containers first, then drills down into their members, while the resizing

code drills down first and resizes the container after its members have

been processed.

Changing Fonts

The cusFontHandler class allows a user to choose a font and size
combination and applies it proportionally to all controls on the form. As

written, the class can actually change the font for any container (not
just a form) and its contents. It has a number of custom methods and

properties, shown in Tables 1 and 2.

Table 1. Font Handler properties–The font handling class has these custom
properties.

Property Purpose

cDefaultFont The default font to display when prompting the user for

the new font, if the target container doesn't have font
properties.

cFontName The name of the font chosen by the user.

cResize The name of a class to use for resizing and
repositioning controls.

cResizeLib The name of the class library containing the resizer

class.

lDrillDown Indicates whether the new font and size should be

applied to contained objects. .T., by default.

lNoResize Indicates whether the resizing step should be omitted.
.F., by default.

nDefaultSize The default font size to display when prompting the
user for the new font, if the target container doesn't

have font properties.

nFontSize The size of the font chosen by the user.

nOriginalSize The original font size of the container (form), used in

proportional sizing.

oResize An object reference to the resizing object.

oTarget An object reference to the object (form) being refonted.

Table 2. Font Handler methods–The font handling class has a number of custom
methods. Only the ChangeFont method is public; the rest are protected.

Method Purpose

ApplyFont Applies the new font and size to an object and
then, recursively, to its contents.

Method Purpose

ApplyFontToGrid Applies the new font and size to a grid and its
contents. Grids require special handling.

ChangeFont The key method that lets the user choose a

new font and size and apply it.

ComputeNewFontSize Computes the new font size of a control, given

the old font size.

GetFont Sets things up for the user to choose a new
font and size.

PromptForFont Prompts the user to choose a new font and
size. Called by GetFont.

In addition to the methods listed in Table 2, the Init and Destroy
methods of the class contain code to instantiate and destroy,

respectively, the specified resizer class.

The ChangeFont method is the only public method among the custom

methods. To change the font for a container and its contents, call
ChangeFont, passing an object reference to the target object (the

object whose font is to be changed). ChangeFont also accepts two
optional parameters that can override the settings of lDrillDown and

lNoResize.

ChangeFont doesn't actually do the work of changing fonts; it calls on

other methods of the class. Here's the main body of ChangeFont:

IF lReturn
 IF This.GetFont()
 IF NOT This.lNoResize AND ;
 NOT PEMSTATUS(This.oTarget, "lHasResizerData", 5)
 * If we're resizing and haven't saved form info,
 * save it now
 This.cusResize.SaveFormDimensions(This.oTarget)
 ENDIF
 This.ApplyFont(This.oTarget)
 * Now resize if requested and available
 IF NOT This.lNoResize AND ;
 PEMSTATUS(This,"cusResize", 5)
 * If we're resizing, do it.
 This.cusResize.AdjustControls(This.oTarget)
 ENDIF
 ENDIF

ENDIF

The code here can be divided into four parts: choosing a font,
preparing for resizing, applying the new font, and resizing. We'll look

at choosing a font and applying it here, and examine the two resizing
tasks later on.

Choosing a Font

The process of letting the user choose a new font is divided into two

parts. The GetFont method stores values needed for font calculations,

and then it calls PromptForFont to let the user actually select the new
font. The code for GetFont is quite simple:

* Let the user choose a font.
LOCAL lReturn

* First, set up defaults
IF PEMSTATUS(This.oTarget,"FontName",5)
 This.cFontName = This.oTarget.FontName
 This.nFontSize = This.oTarget.FontSize

 This.nOriginalSize = This.nFontSize
ELSE
 This.cFontName = This.cDefaultFont
 This.nFontSize = This.nDefaultSize
 This.nOriginalSize = This.nFontSize
ENDIF

lReturn = This.PromptForFont()

RETURN lReturn

In the class provided on this month's Professional Resource CD and on
Advisor.COM, PromptForFont calls VFP's built-in GETFONT() function

and parses the results, storing them in properties of the font handler.

However, you may prefer a different interface for choosing a font
(especially because the dialog displayed by GETFONT() allows the user

to choose font characteristics such as bold and italic that are ignored
by the class). In fact, that's why this part of the process was separated

into another method. A subclass can simply override PromptForFont.
Here's the code that uses GETFONT().

* Prompt the user for font input
* and store the results in the right properties

* In this version, the GETFONT() dialog is used
* but the bold and italic settings are ignored.

LOCAL cNewFont, lReturn

cNewFont = GETFONT(This.cFontName, This.nFontSize, "")

IF NOT EMPTY(cNewFont)
 ALINES(aFontInfo, cNewFont, ",")
 This.cFontName = aFontInfo[1]
 This.nFontSize = VAL(aFontInfo[2])
 lReturn = .T.
ELSE
 lReturn = .F.
ENDIF

RETURN lReturn

Applying the font

The heart of the font handler class is the methods ApplyFont and

ApplyFontToGrid. That's where the actual work of changing fonts and
sizes occurs.

ApplyFont uses a top-down approach, changing the font of an object,
then calling itself recursively for all the objects contained within the

current object. Here's the code:

* Apply the newly chosen font to the object
* and, if appropriate, to its contained objects.
LPARAMETERS oApplyTo

LOCAL nRatio

IF PEMSTATUS(oApplyTo, "FontName",5)
 WITH oApplyTo
 * Compute new font size
 nNewSize = This.ComputeNewFontSize(.FontSize)
 IF nNewSize < 8
 * Handle small fonts
 .FontSize = nNewSize
 ENDIF
 .FontName = This.cFontName
 .FontSize = nNewSize
 ENDWITH
ENDIF

IF This.lDrillDown
 * Apply the new font to all contained objects
 * keeping the fonts proportional

 IF PEMSTATUS(oApplyTo, "Objects", 5)
 * it's a container, so away we go
 FOR EACH oObject IN oApplyTo.Objects
 IF UPPER(oObject.BaseClass) = "GRID"
 This.ApplyFontToGrid(oObject)
 ELSE

 This.ApplyFont(oObject)
 ENDIF
 ENDFOR
 ENDIF
ENDIF

RETURN

The new font is simply applied to the object. The new font size is

computed by the ComputeNewFontSize method, based on the current
font size, the size chosen by the user, and the form's font size at the

start of the refonting process (stored in the nOriginalSize property by
GetFont). Here's the code:

* Compute the new font size for a given font size
LPARAMETERS nOldSize

LOCAL nRatio, nNewSize

ASSERT VARTYPE(nOldSize) = "N" MESSAGE ;
 "ComputeNewFontSize: Must pass numeric parameter"

nRatio = nOldSize/This.nOriginalSize
nNewSize = ROUND(This.nFontSize * nRatio,0)

RETURN nNewSize

Grids turn out to need special handling, however. When you change
the font and size of a grid or column, the changes are automatically

passed along to the members of the grid or column. So, for grids only,
a two-step approach is needed in order to ensure that changes get

applied correctly. The ApplyFontToGrid method uses another class
(cusTraverseGrid) to build an array containing an entry for each object

contained in the grid (drilling down to the very bottom level). The
method then saves the current font size for each object into another

array. At that point, it applies the new font and size to the grid, then
uses the array of font sizes to compute the new sizes for all objects

contained in the array. In this way, the code doesn't depend on the
objects inside the grid to have their old font information at the time

their new size is computed. Here's the code:

* Change font in grid. Special handling is needed
* because any change to a grid or column's FontName
* and FontSize properties is automatically passed down to its members.
LPARAMETERS oGrid AS Grid

LOCAL aGridData[1], oTraverser, oColumn AS Column,
LOCAL nEntries, nCount, aFontData[1]

oTraverser = NEWOBJECT("cusTraverseGrid","Accessibility")

aGridData = oTraverser.BuildGridArray(oGrid)
RELEASE oTraverser

nEntries = ALEN(aGridData)
DIMENSION aFontData[nEntries, 2]

* Now get original font info
FOR nCount = 1 to nEntries
 aFontData[nCount, 1] = aGridData[nCount]
 IF PEMSTATUS(aGridData[nCount], "FontSize", 5)
 aFontData[nCount, 2] = ;
 aGridData[nCount].FontSize
 ELSE
 aFontData[nCount, 2] = -1
 ENDIF
ENDFOR

* Now apply font
* First, apply to grid
oGrid.FontName = This.cFontName
oGrid.FontSize = This.ComputeNewFontSize(oGrid.FontSize)

* Now apply to grid members from the outside in
* using stored font information

FOR nCount = 1 to nEntries
 IF aFontData[nCount, 2] <> -1
 aFontData[nCount, 1].FontName = This.cFontName
 aFontData[nCount, 1].FontSize = ;
 This.ComputeNewFontSize(aFontData[nCount, 2])
 ENDIF
ENDFOR

Be aware that most ActiveX controls aren't affected by this class,

since, in general, they don't have FontName or FontSize properties.
However, many ActiveX controls use a contained Font object that has

Name and Size properties. You can add code to ApplyFont to look for

this object and manipulate its properties.

Resizing and Repositioning

With the font-handling piece in place, I needed a way to adjust the
form once the controls' fonts had been changed. I knew I'd seen a

number of classes over the years designed to handle resizing and
repositioning, so I didn't want to start from scratch. As I looked

around, I found that those classes were designed to respond when a

user resized a form, moving and sizing controls appropriately, possibly
changing font sizes.

My task was the converse, take the form with changed fonts and resize
and reposition the controls. However, I found a class written by Marcia

Akins (published in her book "1001 Things You Wanted to Know about

Visual FoxPro") that offered a good strategy for the problem. With her
permission, I created the cusResizer class based on (but not

subclassed from) her class of the same name.

The cusResizer class has two custom properties and a number of

custom methods, shown in Tables 3 and 4.

Table 3. Resizer properties–The cusResizer class has only two custom properties.
However, it adds properties to the objects it's resizing.

Property Purpose

lResizeForm Indicates whether the form itself is to be resized. If not,
scroll bars are enabled.

oTarget An object reference to the form to be resized.

Table 4. Resizer methods–Only the AdjustControls and SaveFormDimensions
methods are public. The rest are protected and called by those two.

Method Purpose

AdjustControls The public method that kicks off the process

of resizing and repositioning controls.

GetControlWithFont Starting with an object passed as a
parameter, climbs the containership

hierarchy until it finds an object that has font
properties.

GetFontHeight Computes the average height of a character
in the font used by a control.

GetFontWidth Computes the average width of a character

in the font used by a control.

GetHeightRatio Computes the ratio between the height of a

control's original font and the height of the
new font.

GetWidthRatio Computes the ratio between the width of a

control's original font and the width of the
new font.

Method Purpose

ResizeControls Performs the actual resizing and
repositioning of controls. Called recursively

to drill down into the form.

SaveFormDimensions Stores the original dimensions of a form and
its controls

SaveOriginalDimensions Stores the original dimensions of a control.
Called recursively to handle contained

controls.

While changing the font lent itself to a top-down approach, resizing

and repositioning must be performed from the bottom up. That's
because the size of a container is dependent on the size of its

contents. For some controls, that's a VFP requirement. For example,
the pages in a pageframe must all be the same size, and it's set at the

pageframe level. To set the pageframe's Height and Width, you need
to know the maximum size of an individual page.

Preparing for resizing

The goal in resizing and repositioning the controls is to maintain the
original proportions of the form. That means that the new size and

position of a control needs to be calculated with respect to the original
size and position of that control. Since a form and its controls may be

resized and repositioned many times, we need a way to track the
original dimensions of each object.

What made Marcia's resizer class so appealing, in fact, is its clever
solution to this problem. The class dynamically adds properties to each

object on the form (using the AddProperty method) to hold its own
original size and position. This avoids having to manage some kind of

storage (like an array or table) for the data.

The SaveFormDimensions method kicks this process off by storing
form-level information. It calls the SaveOriginalDimensions method for

each control on the form. The methods store the Top, Left, Height,
Width and FontSize for each control that has those properties. For

container controls, they also store the ratio between the rightmost and
bottommost position of a container control and the width and height of

the container. The ratios are used when computing the new size of the

container after resizing and repositioning its contents.

Here's the code for SaveFormDimensions:

* Save form and control data.
LPARAMETERS toForm

ASSERT VARTYPE(toForm) = "O" OR ;
 UPPER(This.Parent.BaseClass) = "FORM" ;
 MESSAGE "SaveFormDimensions: This object must be " + ;
 "placed on a form or receive a form as parameter"

IF VARTYPE(toForm) <> "O" AND ;
 UPPER(This.Parent.BaseClass) <> "FORM"
 ERROR 11
 RETURN .F.
ENDIF

LOCAL loControl

IF VARTYPE(toForm) = "O"
 This.oTarget = toForm
ELSE
 This.oTarget = ThisForm
ENDIF

WITH This.oTarget
 * Save form dimensions and font info at instantiation
 .AddProperty('lHasResizerData', .T.)
 .AddProperty('nOriginalHeight', .Height)
 .AddProperty('nOriginalWidth', .Width)
 .AddProperty('nOriginalFontSize', .FontSize)
 nFontWidth = This.GetFontWidth(This.oTarget)
 nFontHeight = This.GetFontHeight(This.oTarget)
 .AddProperty('nOriginalFontWidth', nFontWidth)
 .AddProperty('nOriginalFontHeight', nFontHeight)

 * Set a minimum Width and Height to avoid errors later
 .MinWidth = .Width / 2
 .MinHeight = .Height / 2

 * Now save the relevant visual properties
 * (height, width, columnwidths, etc)
 * of all the controls on the form
 nRightMost = 0
 nBottomMost = 0

 FOR EACH loControl IN .Controls
 This.SaveOriginalDimensions(loControl)
 nRightMost = MAX(nRightMost, loControl.Left + loControl.Width)
 nBottomMost = MAX(nBottomMost, loControl.Top + loControl.Height)
 ENDFOR

 * Save relationship of far edges to form
 nWidthRatio = .Width/nRightMost
 nHeightRatio = .Height/nBottomMost
 .AddProperty("nOriginalWidthRatio", nWidthRatio)
 .AddProperty("nOriginalHeightRatio", nHeightRatio)

ENDWITH

SaveOriginalDimensions performs a similar task for the individual
controls. Because different controls have different needs, it uses a

case statement based on the control's BaseClass. Here's a portion of
the code, showing the information saved for all controls and the cases

for pageframes and pages.

LPARAMETERS toControl
LOCAL loPage, loControl, loColumn, lnCol
LOCAL cStyle, nFontWidth, nFontHeight
LOCAL nRightMost, nBottomMost

* If the object does not have an AddProperty method, we
* can't add the properties to save the original dimension.
* So bail out
IF ! PEMSTATUS(toControl, 'AddProperty', 5)
 RETURN
ENDIF

* Add the properties to hold the object's
* original dimensions
IF PEMSTATUS(toControl, 'Width', 5)
 toControl.AddProperty('nOriginalWidth', ;
 toControl.Width)
ENDIF
IF PEMSTATUS(toControl, 'Height', 5)
 toControl.AddProperty('nOriginalHeight', ;
 toControl.Height)
ENDIF
IF PEMSTATUS(toControl, 'Top', 5)
 toControl.AddProperty('nOriginalTop', ;
 toControl.Top)
ENDIF
IF PEMSTATUS(toControl, 'Left', 5)
 toControl.AddProperty('nOriginalLeft', ;
 toControl.Left)
ENDIF
IF PEMSTATUS(toControl, 'Fontsize', 5)
 toControl.AddProperty('nOriginalFontSize', ;
 toControl.FontSize)
 nFontWidth = This.GetFontWidth(toControl)
 nFontHeight = This.GetFontHeight(toControl)
 toControl.AddProperty('nOriginalFontWidth', ;
 nFontWidth)
 toControl.AddProperty('nOriginalFontHeight', ;
 nFontHeight)

ENDIF

* Now see if we have to drill down. Also, take care
* of special cases like grids where we have to save
* RowHeight, HeaderHeight, and combos where we need
* to save ColumnWidths
DO CASE
CASE UPPER(toControl.BaseClass) = 'PAGEFRAME'
 nRightMost = 0
 nBottomMost = 0

 FOR EACH loPage IN toControl.Pages
 This.SaveOriginalDimensions(loPage)
 FOR each loControl IN loPage.Controls
 nRightMost = MAX(nRightMost, ;
 loControl.Left + loControl.Width)
 nBottomMost = MAX(nBottomMost, ;
 loControl.Top + loControl.Height)
 ENDFOR
 ENDFOR

 * Save relationship of far edges to controls
 nWidthRatio = toControl.Width/nRightMost
 nHeightRatio = toControl.Height/nBottomMost
 toControl.AddProperty("nOriginalWidthRatio", ;
 nWidthRatio)
 toControl.AddProperty("nOriginalHeightRatio", ;
 nHeightRatio)

CASE INLIST(UPPER(toControl.BaseClass), 'PAGE')
 FOR EACH loControl IN toControl.Controls
 This.SaveOriginalDimensions(loControl)
 ENDFOR

 * Other cases for other containers

Resizing

The AdjustControls method starts the process of resizing and

repositioning. It loops through all the controls on the form, applying

the ResizeControls method to each. It also tracks the rightmost and
bottommost position of the controls once they're sized and moved.

Finally, if the form itself is to be resized (the lResizeForm property is
.T.) , the new height and width are calculated based on the rightmost

and bottommost positions found and the original height and width
ratios. If resizing of the form is turned off, scrollbars are added to the

form as needed. (However, due to an optimization in the VFP engine,
scrollbars actually appear only if the form's ScrollBars property was

not 0 at the time the form was instantiated.)

Here's the code for AdjustControls:

* Adjust sizes for specified form
LPARAMETERS toForm

ASSERT VARTYPE(toForm) = "O" OR ;
 UPPER(This.Parent.BaseClass) = "FORM" ;
 MESSAGE "AdjustControls: This object must be " + ;
 "placed on a form or receive a form as parameter"

IF VARTYPE(toForm) <> "O" AND ;
 UPPER(This.Parent.BaseClass) <> "FORM"
 ERROR 11
 RETURN .f.
ENDIF

IF VARTYPE(toForm) = "O"
 This.oTarget = toForm
ELSE
 This.oTarget = ThisForm
ENDIF

LOCAL loControl, nRightMost, nBottomMost
This.oTarget.LockScreen = .T.

nRightMost = 0
nBottomMost = 0
FOR EACH loControl IN This.oTarget.Controls
 This.ResizeControls(loControl)
 nRightMost = MAX(nRightMost, ;
 loControl.Left + loControl.Width)
 nBottomMost = MAX(nBottomMost, ;
 loControl.Top + loControl.Height)
ENDFOR

* Now deal with the form itself
IF This.lResizeForm
 WITH This.oTarget
 .Width = nRightMost * .nOriginalWidthRatio
 .Height = nBottomMost * .nOriginalHeightRatio
 .Scrollbars = 0
 ENDWITH
ELSE
 nScrollBars = 0
 IF nRightMost > This.oTarget.Width
 nScrollBars = nScrollBars + 2
 ENDIF
 IF nBottomMost > This.oTarget.Height
 nScrollBars = nScrollBars + 1
 ENDIF
 This.oTarget.ScrollBars = nScrollBars
ENDIF

This.oTarget.LockScreen = .F.

Most of the work of resizing and repositioning is done by the

ResizeControls method. Like SaveOriginalDimensions, it has separate
cases for the different types of containers. The code for some

containers, like pageframes and the Container baseclass, looks much
like the form-level code in AdjustControls. Other cases require a

different approach. Here's the case for a grid:

CASE UPPER(toControl.BaseClass) = 'GRID'
 IF PEMSTATUS(toControl, 'Width', 5)
 toControl.Width = toControl.nOriginalWidth * ;
 This.GetWidthRatio(toControl)
 ENDIF
 IF PEMSTATUS(toControl, 'Height', 5)
 toControl.Height = toControl.nOriginalHeight * ;
 This.GetHeightRatio(toControl)
 ENDIF

 WITH toControl
 .RowHeight = .nOriginalRowHeight * ;
 This.GetHeightRatio(toControl)
 .HeaderHeight = .nOriginalHeaderHeight * ;
 This.GetHeightRatio(toControl)
 FOR lnCol = 1 TO .ColumnCount
 .Columns[lnCol].Width = ;
 .nOriginalColumnWidths[lnCol] * ;
 This.GetWidthRatio(toControl)
 ENDFOR
 ENDWITH

And here's the final case, which handles non-container controls:

OTHERWISE
 * Handle "scalar" controls
 IF PEMSTATUS(toControl, 'Width', 5)
 toControl.Width = toControl.nOriginalWidth * ;
 This.GetWidthRatio(toControl)
 ENDIF
 IF PEMSTATUS(toControl, 'Height', 5)
 toControl.Height = toControl.nOriginalHeight * ;
 This.GetHeightRatio(toControl)
 ENDIF

The GetHeightRatio and GetWidthRatio methods compute the ratio of
the new font's height or width to the same characteristic of the original

font. These methods call on the GetFontHeight and GetFontWidth
methods, respectively, to compute the height and width of the

specified font in the specified size with the control's current
characteristics (such as bold, italic, etc.).

Here's the code for GetHeightRatio. GetWidthRatio is analogous.

* Compute the Height ratio of the new size to the old
* for a control
LPARAMETERS oControl

ASSERT VARTYPE(oControl) = "O" ;
 MESSAGE "GetHeightRatio: Must pass object"
IF VARTYPE(oControl) <> "O"
 ERROR 11
 RETURN -1
ENDIF

LOCAL nFontHeight, nRatio, oUseControl

* This control may not have font properties, so move up
* until you find one that does. Since we're on a form,
* there'll always be one.
oUseControl = This.GetControlWithFont(oControl)

WITH oUseControl
 nFontHeight = This.getfontheight(oUseControl)
 nRatio = nFontHeight/.nOriginalFontHeight
ENDWITH

RETURN nRatio

Here's GetFontHeight. Again, GetFontWidth is analogous.

* Compute the average Height of a character
* for a specified control
LPARAMETERS oControl

ASSERT VARTYPE(oControl) = "O" ;
 MESSAGE "GetFontHeight: Must pass object"
IF VARTYPE(oControl) <> "O"
 ERROR 11
 RETURN -1
ENDIF

WITH oControl
 cStyle = IIF(.FontBold,"B","")
 cStyle = IIF(.FontItalic,cStyle + "I",cStyle)
 cStyle = IIF(.FontOutline,cStyle + "O",cStyle)
 cStyle = IIF(.FontShadow,cStyle + "S",cStyle)
 cStyle = IIF(.FontStrikethru,cStyle + "-",cStyle)
 cStyle = IIF(.FontUnderline,cStyle + "U",cStyle)
 nFontHeight = FONTMETRIC(1, .FontName, ;
 .FontSize, cStyle)

ENDWITH

RETURN nFontHeight

Putting the font handler to work

The next piece to letting users change fonts on the fly is some
mechanism for starting the process. One common way to give users

this ability is with a context (right-click) menu. The PRD and
downloads include a context menu that contains just a Fonts item.

That item calls a program, SetFont, like this:

DO SetFont WITH _SCREEN.ActiveForm

The SetFont program makes sure there's a cusFontHandler object

available and calls its ChangeFont method passing a reference to the
active form. SetFont is written so that it can work in the context of an

application object (referenced by oApp) or on its own:

* Call on the Font Handler to change the font for the
* passed object. If there's an application object,
* look for the Font Handler there. Otherwise, use
* a public variable.
LPARAMETERS oTarget

* Make sure we have a target
IF VARTYPE(oTarget) <> "O"
 ERROR 11
 RETURN .F.
ENDIF

LOCAL oFonts

DO CASE
CASE TYPE("oApp") = "O" AND ;
 PEMSTATUS(oApp, "oFontHandler",5)
 IF VARTYPE(oApp.oFontHandler) <> "O"
 * instantiate it
 oApp.oFontHandler = ;
 NEWOBJECT("cusFontHandler","Accessibility")
 ENDIF
 oFonts = oApp.oFontHandler

CASE VARTYPE(oFontHandler) <> "O"
 RELEASE oFontHandler
 PUBLIC oFontHandler

 oFontHandler = NEWOBJECT("cusFontHandler",;
 "Accessibility")
 oFonts = oFontHandler

OTHERWISE
 * it already exists in the public variable
 oFonts = oFontHandler
ENDCASE

oFonts.ChangeFont(oTarget, .T.)

RETURN

Making it stick

Once the user has adjusted the font for a form, he probably wants to
continue using that font/size combination. So the final piece of the

puzzle is the ability to store the font settings and restore them when
the form is next run.

This part of the task uses classes based on a set written by Doug
Hennig. Doug's classes combined the process of deciding what to store

with the actual storage mechanism. I refactored his classes into two
class hierarchies. sfPersistent (which has the same name as Doug's

original root class, but is somewhat modified) is an abstract class that
does everything except actually store the data. It has an abstract

DefineItems method that lets subclasses specify which items to store.

PersistentStorage is an abstract class for the storage of data. It has

SaveOne and RestoreOne methods to hold the code that actually
stores and retrieves data. sfPersistent has properties (cStorageClass,

cStorageClassLib) to tell it which PersistentStorage subclass to use – it
instantiates the appropriate class in its Init method.

To actually store the font data, I use a subclass of sfPersistent called

cusPersistFonts. This class has a custom property, cFormID, that you
must fill in for each form that uses the control. The property identifies

the form, so that you can store font data for multiple forms in the
same table. I tend to use the name of the form.

cusPersistFonts has code in the DefineItems method that tells it to
store the Left, Top, Height, Width, FontName and FontSize properties

for the form itself and every control on it. Here's the code:

* Add the font and size data to the list to be preserved
LPARAMETERS toObject

LOCAL lcObjectId, lcObjectPath, lcRelativeObjectPath
LOCAL loObject, loSubObject

* We need a form id
IF EMPTY(This.cFormID)
 RETURN .F.
ENDIF

* If no object passed, work with the form.
IF VARTYPE(toObject) = "O"

 loObject = toObject
ELSE
 loObject = ThisForm
ENDIF

* Skip this object
IF loObject = THIS
 RETURN
ENDIF

lcObjectPath = SYS(1272, loObject)
IF "." $ lcObjectPath
 lcRelativeObjectPath = "ThisForm." + ;
 SUBSTR(lcObjectPath,AT(".",lcObjectPath) + 1)
 lcObjectId = This.cformid + "." + ;
 SUBSTR(lcObjectPath,AT(".",lcObjectPath) + 1)
ELSE
 * This is the form
 lcRelativeObjectPath = "ThisForm"
 lcObjectId = This.cFormID
ENDIF

IF PEMSTATUS(loObject, "Left",5)
 This.AddItem(lcObjectId + ".Left", lcRelativeObjectPath + ".Left")
ENDIF

IF PEMSTATUS(loObject, "Top",5)
 This.AddItem(lcObjectId + ".Top", lcRelativeObjectPath + ".Top")
ENDIF

IF PEMSTATUS(loObject, "Height",5)
 This.AddItem(lcObjectId + ".Height", lcRelativeObjectPath + ;
 ".Height")
ENDIF

IF PEMSTATUS(loObject, "Width",5)
 This.AddItem(lcObjectId + ".Width", lcRelativeObjectPath + ".Width")
ENDIF

IF PEMSTATUS(loObject, "FontName",5)
 This.AddItem(lcObjectId + ".FontName", lcRelativeObjectPath + ;
 ".FontName")
ENDIF

IF PEMSTATUS(loObject, "FontSize",5)
 This.AddItem(lcObjectId + ".FontSize", lcRelativeObjectPath + ;
 ".FontSize")
ENDIF

* Now handle contained objects
IF PEMSTATUS(loObject, "Objects", 5)
 FOR EACH loSubObject IN loObject.Objects
 This.DefineItems(loSubObject)
 ENDFOR
ENDIF

RETURN

I chose to store the font data in a table, so cusPersistFonts specifies a

subclass of PersistentStorage called PersistentTable. (There's also a
subclass for storing data in the Registry.) PersistentTable has a custom

property to specify the name of the table in which to store the data, as
well as code in its Init method to make sure the table exists and is

open. The SaveOne and RestoreOne methods are fairly simple, finding
or creating the appropriate record and storing or retrieving the data.

The original form settings can be restored by deleting the whole table
or just the records that relate to a particular form. You might want to

add a "Restore Font Settings" item to the context menu or to the
dialog for choosing fonts (if you're using something other than the

GETFONT() function) and have it perform this action.

This set of classes doesn't actually interact with the font handling and
resizing classes. To set up a form so that its font information is saved,

just drop an instance of cusPersistFonts onto the form. Be sure it’s the
last control to be instantiated, however; since DefineItems is called

from the Init method, you need to be sure all the other objects have
been instantiated and can be found when DefineItem runs. To make it

the last control, click on it in the Form Designer and choose Format-
Bring to Front.

Give Them What They Want

Even when you put control over fonts and sizes into your user's hands,
you still need to spend time properly designing forms so they're

visually attractive and have an appropriate flow of control. However,
you don't have to worry about finding the ideal trade-off of space used

vs. readability. Each user can choose that for himself.

Complete code for all of the classes described in this article is in

included on this month's Professional Resource CD and can be
downloaded from Advisor.COM. There's also a sample form

demonstrating changing fonts.

